Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts.

نویسندگان

  • J R Neely
  • L W Grotyohann
چکیده

The mechanism of irreversible damage to ischemic myocardium was investigated in the perfused rat heart. The time of transition from reversible to irreversible damage to contractile function was accelerated by accumulation of glycolytic products and increases in extracellular calcium. Both of these effects were largely independent of adenine nucleotide levels in the tissue. With zero coronary flow and 1.25 mM calcium the decrease in ability of the heart to recover ventricular function with reperfusion after 30 minutes of ischemia was directly correlated with accumulation of glycolytic products (as estimated by tissue lactate) during ischemia. The extent of lactate accumulation during ischemia was varied by preperfusing the hearts for 0, 10, or 15 minutes under anoxic, high coronary flow conditions to deplete tissue glycogen prior to ischemia, and by adding lactate back to the perfusate of these hearts during the ischemic period. Recovery of ventricular function was inversely related to tissue lactate during ischemia and varied from 28 to 92%, even though there was little or no change in tissue levels of residual adenosine triphosphate. Increasing extracellular calcium accelerated the time of onset of irreversible damage with little or no change in residual adenosine triphosphate levels. At any given calcium concentration, the time-dependent declines in the ability of the heart to recover ventricular function was also largely independent of adenosine triphosphate levels. These studies suggest a major role of anaerobic glycolytic products (lactate, hydrogen ion, or NADH) in ischemic damage to the heart that is unrelated to loss of tissue adenine nucleotides. With zero or low flow ischemia, this effect may result in irreversible damage to the myocardium before adenine nucleotides are reduced to critically low levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the role of acute and repeated stress on remote ischemic preconditioning-induced cardioprotection

Objective(s): To study the effect of acute and repeated stress on cardioprotection-induced by remote ischemic preconditioning (RIPC).Materials and Methods: RIPC was induced by giving 4 short cycles of ischemia and reperfusion, each consisting of five min. The Langendorff’s apparatus was used to perfuse the isolated rat hearts by subjecti...

متن کامل

Allopurinol enhanced adenine nucleotide repletion after myocardial ischemia in the isolated rat heart.

Allopurinol, a competitive inhibitor of xanthine oxidase, has been shown to have a protective effect on ischemic myocardium, but its mechanism of action remains controversial. We used an isolated rat heart preparation to test the hypothesis that allopurinol could restore adenosine triphosphate (ATP) levels and improve the recovery of left ventricular function after global myocardial ischemia. H...

متن کامل

Ischemic-reperfused isolated working mouse hearts: membrane damage and type IIA phospholipase A2.

For the murine heart the relationships between ischemia-reperfusion-induced loss of cardiac function, enzyme release, high-energy phosphate (HEP), and membrane phospholipid metabolism are ill-defined. Accordingly, isolated ejecting murine hearts were subjected to varying periods of ischemia, whether or not followed by reperfusion. On reperfusion, hemodynamic function was almost completely resto...

متن کامل

Lack of effect of plasma of myocardial preconditioned, ischemic and ischemic-reperfused rats of myocardium on differentiation of mesenchymal stem cells into cardiomyocytes

Introduction: Numerous studies have shown that enriched plasma protects myocardial cells against ischemia. The aim of this study was to evaluate the effect of rat enriched plasma by preconditioning, ischemia, and reperfusion on the differentiation of bone marrow mesenchymal stem cells (BMMSC) into cardiomyocytes. Methods: In this experimental and laboratory study, BMMSCs were extracted from th...

متن کامل

Receptor for advanced-glycation end products: key modulator of myocardial ischemic injury.

BACKGROUND The beneficial effects of reperfusion therapies have been limited by the amount of ischemic damage that occurs before reperfusion. To enable development of interventions to reduce cell injury, our research has focused on understanding mechanisms involved in cardiac cell death after ischemia/reperfusion (I/R) injury. In this context, our laboratory has been investigating the role of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 55 6  شماره 

صفحات  -

تاریخ انتشار 1984